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Abstract—Differential equations arise in many 

fields of application, such as in the simulation of 
phenomena in chemistry, physics, biology, 
medicine and so forth. These equations are 
generally in the form of initial value problems 
(IVPs), which can be extremely costly to solve 
when they are stiff due to the requirement of 
working with implicit methods. Implicit methods 
are costly because at each time step we need to 
solve implicit equations, which are nonlinear in 
general. Therefore, in such cases parallelization 
becomes an attractive approach. 

In this article we propose a parallel 
implementation of an ODE solver based on implicit 
Runge-Kutta framework. The parallelization is 
performed in two levels, i.e. across the method in 
solving the arising nonlinear systems and across 
the system in solving the associated linear 
systems. We use two kinds of test problems, the 
Brusselator and the Dense problems. The 
experiment was run on a cluster of PCs with PVM 
message-passing environment.  

Our observations show that for the Brusselator 
problem, using parallelization will result in a better 
performance in terms of speedup for sufficiently 
large data. However for the Dense problem, the 
maximum attainable speedup is only two. We 
conclude that our two levels parallelization 
technique is only suitable for Brusselator type 
problems.  
 

Index Terms—message-passing, performance, 
PVM, stiff. 
 

1. INTRODUCTION 
any of mathematical models can be 
expressed in the form of IVPs for ODEs 

given in the following form [1]: 
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where my ℜ→ and mmf ℜ→ℜ×ℜ: . Higher order 
systems can always be written as systems of first 
order differential equations by introducing an 
additional vector and representing all derivatives 
accordingly. The solution of these ODEs can be 
extremely expensive due to the following factors: 

• The dimension of the ODE is very large; 
• The evaluation of the right-hand side 

factor is expensive; 
• The interval of the integration is very 

long; 
• The ODEs must be solved repeatedly. 

It is widely believed that computationally 
intensive problems can be solved effectively 
using parallel computation. 

There are three different techniques of 
parallelism. The first technique is parallelism 
across the method [2] that exploits concurrent 
function evaluations within a step or computes 
blocks of values simultaneously. The second 
technique is parallelism across the system [2] 
that involves decomposition of the problem into 
subproblems and solution of the subproblems 
concurrently. The last technique is parallelism 
across the step. This consists of strategy such as 
parallel solution of linear and nonlinear 
recurrences which are solved simultaneously 
over a large number of steps [3]. 

Several authors have designed and 
implemented ODE solvers. Their works are 
mainly based on construction of new integration 
formula which accommodates parallelism. For 
example, Suhartanto designed a parallel iterated 
technique based on multistep Runge-Kutta 
formula and implemented it using HPF90 
technology [4]. Bendtsen designed a new formula 
based on Multiply Implicit Runge-Kutta (MIRK) 
methods which exploit parallelism across the 
method and implemented it using MPI (Message 
Passing Interface) technology [5]. De Swart 
designed a parallel iterated technique based on 
Implicit Runge-Kutta methods [6]. Bryne and 
Hindmarsh created MPI versions of PVODE from 
CVODE [7], a solver which is generated from two 
earlier solvers, VODE [8] and VODPK [9], by 
accommodating some parallel techniques [10]. 
The common part of the algorithms is the 
stepsize iteration (outer most loop) uses 

Performance of a Parallel Technique for 
Solving Stiff ODEs Using a Block-diagonal 

Implicit Runge-Kutta Method 
Kartawidjaja, M. A.; Suhartanto, H.; and Basaruddin, T. 

M



 

  69
 
 
 

nonlinear iteration (Newton loop) to solve the 
nonlinear equation, and the nonlinear iteration 
uses some linear solvers. It means that there will 
be a linear solver loop if an iteration technique is 
used. We refer to it as inner most loop. However, 
none of those works investigate the effect of 
parallelism inside the inner most loop to the next 
outer loop (Newton loop) and further to the outer 
most loop (stepsize loop). Our research is aim to 
investigate this effect of parallelization on the 
overall performance of the ODE solver. 

In this article we propose a parallel 
implementation of an ODE solver based on 
implicit Runge-Kutta framework. The 
parallelization is performed in two levels, i.e. 
across the method in solving the arising 
nonlinear systems and across the system in 
solving the associated linear systems. We use 
two kinds of test problems, the Brusselator 
problem which has a banded matrix structure and 
the Dense problem which has a full matrix 
structure. Because in general numerical methods 
have either banded or full matrix structures, it is 
reasonable to take those two models as test 
problems. Furthermore, stiffness of the problem, 
a factor that influences the rate of convergence 
of the solution, can be adjusted, and so can be 
the dimension of the problem.  

2. A BRIEF OVERVIEW OF NUMERICAL CONCEPTS 

2.1. Runge-Kutta method  
An autonomous form of an s-stage Runge-

Kutta method [3] is expressed as  
( ) ( )
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where Y  represents the intermediate 
approximation vectors, A denotes the Runge-
Kutta matrix and h is the step size. Using Newton 
iteration scheme results in the following linear 
system: 

( ) GJhAII ms =Δ⊗−⊗ ,          (3) 

where J  is a Jacobian matrix. In order to reduce 
the computational cost, the Jacobian is evaluated 
at a single point [3], at 0y  for instance, and the 
method is called modified Newton method [3][1]. 
This Jacobian is computed either using analytical 
or numerical approach. If the users do not 
provide the analytical Jacobian, a numerical 
Jacobian is computed using finite difference 
method. 

There are two diverse approaches to solve the 
linear systems, direct and iterative methods. 
Time complexity of direct methods equals Ο(n3) 
and of iterative methods Ο(kxn2), where k is the 
iteration step and n is the problem size. Thus, it 
is reasonable to consider the use of iterative 
methods to solve large linear systems. In our 
work we consider a widely used iterative method 
called GMRES (Generalized Minimal Residual) 

proposed by Saad [11] to solve the linear 
systems.  

 

2.2. Error estimation 
The estimation and control of errors are 

extremely important features in determining the 
accuracy of a numerical solution. A numerical 
method is supposed to produce a solution within 
a prescribed error tolerance. There are two 
measures of error commonly used, global error 
and local error. Although we are usually 
interested in global error which is the difference 
between the true solution and the numerical 
approximation, this error is not computable since 
we do not know the true solution in advance, 
besides it is difficult to estimate [12]. Therefore, 
most numerical codes estimate the local error 
and adjust the step size h in order to control the 
global error indirectly.  

One technique to measure the local error is to 
use an embedding method introduced by Merson 
[13]. The idea of this method is to construct 
Runge-Kutta formulas which contain a second 
approximation 

nŷ besides the numerical solution 

ŷ  and the order of those two formulas differs by 
one. The embedding process can be modeled by 
the following Butcher’s tableau. 

    c    A 
         y   Tb  

    ŷ   Tb̂  

   Te  
The method defined by c, A and Tb  is our 
numerical approximation that has order q, and 
that defined by c, A and Tb̂  is the second 
approximation with one order higher or lower 
than the original method. Normally the embedded 
formula uses a lower order, i.e. 1ˆ −= qq  [14]. 
The difference between the two approximations, 

nŷ  and 
ny is used to estimate the local error 
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There are many ways to measure the size of the 
estimated error vector. One way is to use a 
weighted root mean square norm [15] where the 
error is defined by 
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in which en,i is the ith component of the error 
vector and ewt is an error weighting factor written 
as  

( ) iiiii rtolyyatolewt .,max ,1,0+=      (6) 

The parameter rtol and atol are respectively the 
relative and absolute tolerances specified by the 
user. The former indicates the number of digits in 
accordance with relative accuracy taken at each 
time step, and the latter designates the value of 
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the corresponding component of the solution 
vector. The estimated error at each time step 
varies with the stepsize with the aim of taking 
minimum number of steps while satisfying the 
error boundary. 
 

2.3. Stepsize selection 
An ODE integrator generates the solution by 

marching forward in time using one of the 
stepsize selection strategies, fixed stepsize or 
variable (adaptive) stepsize. 

The simplest algorithms use fixed stepsize in 
the computation, meaning that a constant 
stepsize is used throughout the entire integration. 
However, this strategy can lead to excessive 
computation time especially when dealing with 
stiff problems where solutions have sharp 
changes. Therefore, modern solvers usually use 
algorithms that monitor the accuracy of the 
solution continuously and adjust the stepsize 
adaptively according to local truncation error 
calculated at each integration step. Stepsize 
should be chosen as such that it should be 
sufficiently small to cope with the sharp changes 
in the solution and must be as large as possible 
to minimize the computation cost and the round-
off error.  

A standard stepsize selection formula in 
integration of IVPs [15][16] is written as  
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where r is the estimated error, k is a constant 
related to the order of the method and ε =θ.TOL. 
The value of θ  < 1 is a safety factor to reduce the 
risk of stepsize rejection. Although determining 
the stepsize using standard stepsize strategy is 
widely used and successfully implemented, for 
certain cases more sophisticated methods are 
required. 

Based on the knowledge in linear digital control 
theory, Söderlind introduced a PID (Predictive 
Integral Derivative) controller to control the 
stepsize. The general form of the PID controller 
[17] is given as 
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where 
PI kk , and 

Dk  are parameters of integral, 
proportional and derivative gains respectively. 
The family of filter based controllers can be 
classified using a notation of HpDpApF, where pD, 
pA and pF denote the dynamic order, adaptivity 
and filter order respectively. One class of this 
controller, H211b, is appropriate to solve medium 
to non-smooth problems as stated in [17].  This 
controller is defined by 
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In practice the value of b in equation (9) may be 
chosen in the range of 2 – 8, where larger values 
of b offer more smoothness of stepsize. Detail 
discussion of these controllers can be found in 
[17]. 

3. PARALLEL PERFORMANCE 
There are various metrics to evaluate 

performance of parallel systems, such as run 
time, speedup and efficiency.  

A sequential algorithm is usually evaluated in 
terms of its execution time, and expressed as a 
function of the problem size. On the contrary, the 
execution time of a parallel algorithm depends 
not only on the problem size, but also on the 
architecture of the parallel computer and the 
number of processors involved in the 
computation.     

A general model of parallel execution time [18] 
is formulated as 

commcompp TTT += ,            (10) 

where compT  and commT  denote computation time 

and communication time respectively. This model 
is an ideal model where only computation and 
communication processes are assumed to take 
place. However, in parallel environment the 
execution time will also incorporate waiting time 
of a processor, synchronization time or even 
collision time if exists. Thus, a more realistic 
model of a parallel execution time is 

δ++= commcompp TTT ,           (11) 

where δ  is the time a processor neither in the 
state of computing nor in the state of 
communicating. This parameter denotes the 
overhead in parallel computation and thus limits 
the speedup. The overhead can be caused by 
several factors [19]: 

• imbalanced workload;    
• the time spent waiting at synchronization 

level; 
• extra computations in the parallel version 

which are not needed in the sequential 
version. 

Unfortunately those issues are conflicting with 
one another and thus must be traded off. Unlike 
the computation and communication time that 
contribute to the parallel execution time in a 
straightforward manner, the parameter δ is 
difficult to be determined.  

4. PROBLEM STATEMENT 
We use two types of test problems, 1-D 
diffusion Brusselator problem and the Dense 
problem. The dimension of ODEs used in 
these two problems ranges from 100 to 700. 
 

4.1. Brusselator problem 
The Brusselator problem is modeled as [20] 
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where u and v denote the concentration of 
reaction products, A and B denote the 
concentration of input reagents. The parameter 

2Ld=α , where d is the diffusion coefficient and 
L is the reactor length. The value of α determines 
the stiffness of the problem. In our work we 
chose A = 1, B = 3 and α = 0.02. The initial 
conditions are 

( ) ( )
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Setting    ( ) ( ) ( )11  ,1   1 +=Δ≤≤+= NxNiNixi   and 
discretizing the derivatives in equation (12) over 
a grid of N points yields 
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with  ( ) ( ) ( ) 30,2sin10 =+= iii vxu π   and   Ni K,1= . 
 

4.2. Dense  problem 
The Dense problem [4][21]] is defined by 

( ) mieQYy
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where ( ) [ ]1,0  ,0 , ∈=ℜ∈ xeYY m  and 11 DQQQ T= . 
Matrix 1Q has orthonormal columns of a random 
dense matrix. The eigenvalues of matrix D can 
be adjusted and hence the eigenvalue spectrum 
of matrix Q can be adjusted as well. In our work 
we use matrix D  with an eigenvalue spectrum 
that ranges from 1 to 10. 
 

5. IMPLEMENTATION ISSUES 
In our work we use a block-diagonal Runge-

Kutta matrix proposed by Iserles and Norsett [22] 
which is a method of order 4. For the second 
approximation we use a third order method. The 
construction of the third order method has to 
obey a certain condition as described in [15]: 
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Because it is impossible to find a pair of order 
4(3) for a 4-stage Runge-Kutta method, we use a 
method called FSAL (First Same As Last) as 
suggested in [15]. This method adds y as a fifth 
stage of the process. As a result we have four 
linear systems with five unknowns, and thus we 

must take an arbitrary value for one of the 
unknown. In order to have a relative small 
difference between vector Tb̂  and Tb  we set 

16
5 106ˆ −×=Tb . The modified Runge-Kutta matrix 

is thus given in Table 3. 

TABLE 3 MODIFIED ISERLES AND NØRSETT 
PAIR FORMULA. 
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To control the error we consider the stepsize 
controller introduced by Söderlind that belongs to 
H211b class and set b = 4 as recommended in 
[17].   

 

6. PARALLEL IMPLEMENTATION 
In our experiment we exploit parallelism across 

the method as well as parallelism across the 
system. Parallelism across the method is 
implemented for solving the nonlinear systems 
using Newton’s scheme as discussed in [23], and 
parallelism across the system is employed for 
solving the linear system using GMRES method 
as presented in [24]. If there are only two 
processors available, parallelization is performed 
only using across the method to solve the two 
nonlinear systems simultaneously. If more 
processors are available, the parallelization 
across the system is also done to solve the linear 
systems. Figure 5 gives an illustration of the 
parallelization process. 

If there are only two processors, after 
initialization p1 sends vector Y2 and stepsize h to 
p2. Afterwards each processor builds its own 
Jacobian, and the succeeding computation can 
be carried out concurrently. If there are four 
processors or more, the resulting linear systems 
can further be parallelized, meaning that the two 
groups of processors, p1 – p3  and  p2 – p4 as 
depicted in Figure 6, work independently in 
solving the linear systems and the exchange of 
data between those two groups only occurs at 
the beginning and the end of the computation, or 
if synchronization is needed, such as if 
convergence is not achieved after a predefined 
maximum Newton iteration and time step h 
needs to be reduced as a consequence.  
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FIGURE 5  STRUCTURE OF PARALLEL ODE. 
 

  

 

FIGURE 6 PROCESSOR WORKING-
RELATIONSHIP. 

To ensure load balancing, the number of 
processors involved in parallel environment 
should be an even number. Since only four 
processors are available in our working platform, 
we could use only two and four processors in 
parallel and each process is mapped onto each 
processor.  

 

7. NUMERICAL EXPERIMENTS AND RESULTS 
The experiment was performed on a cluster of 
PCs, consisting of four processors with similar 
characteristics, connected through a 100 Mbit 
Ethernet link. Each PC has an INTEL Pentium 
III 450 MHz processor and 512 MB RAM. They 
run Linux Mandrake 8 and the test code was 
written in C. The measurement was performed 
in PVM environment that provides a collection 
of library routines for message-passing. 
Further details concerning PVM can be found 
in [25]. 

 

7.1. Brusselator problem 
The performance curve of the solver for the 
Brusselator problem with finite difference and 
analytical Jacobian is given in Figure 7. 

Speedup of ODE solver for Brusselator problem with 
finite difference and analytical Jacobian
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FIGURE 7  SPEEDUP OF ODE SOLVER FOR 
THE BRUSSELATOR PROBLEM WITH FINITE-
DIFFERENCE AND ANALYTICAL JACOBIAN. 

We note from Figure 7 that using 
multiprocessors will result in a better 
performance despite how the Jacobian matrix is 
provided except for ODE with small dimension, 
i.e. n = 100, where applying parallelization will 
result in a performance degradation because of 
the domination of communication time over 
computation time. We also observe that a 
superlinear speedup occurs for large size of ODE 
solved using two processors, i.e. ODE of 
dimension n ≥ 600. This superlinear speedup 
occurs for ODE with either finite difference or 
analytical Jacobian. Superlinerar speedup does 
not reflect the actual performance gain, it is 
usually caused by the size of data which might 
be too large to fit into the main memory of a 
single processor.  

Our observation indicates that solving the 
linear system requires approximately 50 to 70% 
of the overall execution time in each integration 
step. This large percentage of time will contribute 
to a better performance when more processors 
are available except for small data size, i.e. for 
ODE with dimension n ≤ 200.  

 

7.2. Dense problem 
The performance of the Dense problem is 
illustrated in Figure 8. We note from this figure 
that a better performance can be achieved by 
using 2 and 4 processors.  

For solver with finite difference Jacobian, we 
observe that approximately 95 to 99% of 
computation time is required to compute the 
Jacobian matrix and less than 5% to solve the 
linear systems. Because only two processors are 

p2 

p1 

p3 p4 p2 

p1 

(a)  Two processors  (b)  Four  processors

Preprocessing 
tn = t0  
while (tn < tfin) 
initialize Y 
   if p > 1 
    p1 sends Y2 and h to p2 
   end if  
   Newton_converge := false  
   while (not converge) 
     call nonlinear solver -> parallelism across 

                                  the method [23]   
        GMRES_converge := false  
      while (not converge)   

 call linear solver ->  parallelism across 
                                 the system [24]  

      end while 
  end while 
  estimate error  
  compute hnew 
  tn = tn + hnew 
end while 
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involved in solving nonlinear systems, the 
maximum attainable speedup is two, and 
employing more processors will not contribute to 
speedup because of the very small amount of 
time is needed to solve the linear system. 

 

Speedup of ODE solver for Dense problem with finite 
difference and analytical Jacobian
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FIGURE 8  SPEEDUP OF ODE SOLVER FOR 
THE DENSE PROBLEM WITH FINITE-
DIFFERENCE AND ANALYTICAL JACOBIAN. 
For solver with analytical Jacobian, the 
computation time required to solve the linear 
system at each integration step is approximately 
25 to 30% of the overall execution time. 
However, this amount of time is not large enough 
to contribute to the speedup by parallelizing the 
linear system, in contrary the performance will 
degrade. In other words, for solver with analytical 
Jacobian, the maximum performance is achieved 
by using two processors where only 
parallelization across the method is employed.  
 

8. CONCLUSION 
From the experiment we conclude that if 

solving the linear systems requires a large 
percentage of time as in the Brusselator problem, 
two levels parallelization will result in a better 
performance in terms of speedup. However, if 
solving the linear systems only consumes about 
30% of the overall execution time as in the Dense 
problem, parallelizing the linear systems will not 
contribute to a better performance. Further 
experiment by incorporating more processors will 
be performed. 
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