

 68

Abstract—Differential equations arise in many

fields of application, such as in the simulation of
phenomena in chemistry, physics, biology,
medicine and so forth. These equations are
generally in the form of initial value problems
(IVPs), which can be extremely costly to solve
when they are stiff due to the requirement of
working with implicit methods. Implicit methods
are costly because at each time step we need to
solve implicit equations, which are nonlinear in
general. Therefore, in such cases parallelization
becomes an attractive approach.

In this article we propose a parallel
implementation of an ODE solver based on implicit
Runge-Kutta framework. The parallelization is
performed in two levels, i.e. across the method in
solving the arising nonlinear systems and across
the system in solving the associated linear
systems. We use two kinds of test problems, the
Brusselator and the Dense problems. The
experiment was run on a cluster of PCs with PVM
message-passing environment.

Our observations show that for the Brusselator
problem, using parallelization will result in a better
performance in terms of speedup for sufficiently
large data. However for the Dense problem, the
maximum attainable speedup is only two. We
conclude that our two levels parallelization
technique is only suitable for Brusselator type
problems.

Index Terms—message-passing, performance,
PVM, stiff.

1. INTRODUCTION
any of mathematical models can be
expressed in the form of IVPs for ODEs

given in the following form [1]:

.)(
],[)),(,()(

00

'

yxy
baxxyxfxy

=
∈= , (1)

Manuscript received March 31, 2005. Revised July 18, 2005.
Kartawidjaja, M. A., Faculty of Electrical and Engineering,

University of Atma Jaya, Jakarta, Indonesia (e-mail:
maria.kw@atmajaya.ac.id).

Suhartanto, H., Faculty of Computer Science, University of
Indonesia, Depok, Indonesia (email: heru@cs.ui.ac.id).

Basaruddin, T., Faculty of Computer Science, University of
Indonesia, Depok, Indonesia (email: chan@cs.ui.ac.id).

where my ℜ→ and mmf ℜ→ℜ×ℜ: . Higher order
systems can always be written as systems of first
order differential equations by introducing an
additional vector and representing all derivatives
accordingly. The solution of these ODEs can be
extremely expensive due to the following factors:

• The dimension of the ODE is very large;
• The evaluation of the right-hand side

factor is expensive;
• The interval of the integration is very

long;
• The ODEs must be solved repeatedly.

It is widely believed that computationally
intensive problems can be solved effectively
using parallel computation.

There are three different techniques of
parallelism. The first technique is parallelism
across the method [2] that exploits concurrent
function evaluations within a step or computes
blocks of values simultaneously. The second
technique is parallelism across the system [2]
that involves decomposition of the problem into
subproblems and solution of the subproblems
concurrently. The last technique is parallelism
across the step. This consists of strategy such as
parallel solution of linear and nonlinear
recurrences which are solved simultaneously
over a large number of steps [3].

Several authors have designed and
implemented ODE solvers. Their works are
mainly based on construction of new integration
formula which accommodates parallelism. For
example, Suhartanto designed a parallel iterated
technique based on multistep Runge-Kutta
formula and implemented it using HPF90
technology [4]. Bendtsen designed a new formula
based on Multiply Implicit Runge-Kutta (MIRK)
methods which exploit parallelism across the
method and implemented it using MPI (Message
Passing Interface) technology [5]. De Swart
designed a parallel iterated technique based on
Implicit Runge-Kutta methods [6]. Bryne and
Hindmarsh created MPI versions of PVODE from
CVODE [7], a solver which is generated from two
earlier solvers, VODE [8] and VODPK [9], by
accommodating some parallel techniques [10].
The common part of the algorithms is the
stepsize iteration (outer most loop) uses

Performance of a Parallel Technique for
Solving Stiff ODEs Using a Block-diagonal

Implicit Runge-Kutta Method
Kartawidjaja, M. A.; Suhartanto, H.; and Basaruddin, T.

M

 69

nonlinear iteration (Newton loop) to solve the
nonlinear equation, and the nonlinear iteration
uses some linear solvers. It means that there will
be a linear solver loop if an iteration technique is
used. We refer to it as inner most loop. However,
none of those works investigate the effect of
parallelism inside the inner most loop to the next
outer loop (Newton loop) and further to the outer
most loop (stepsize loop). Our research is aim to
investigate this effect of parallelization on the
overall performance of the ODE solver.

In this article we propose a parallel
implementation of an ODE solver based on
implicit Runge-Kutta framework. The
parallelization is performed in two levels, i.e.
across the method in solving the arising
nonlinear systems and across the system in
solving the associated linear systems. We use
two kinds of test problems, the Brusselator
problem which has a banded matrix structure and
the Dense problem which has a full matrix
structure. Because in general numerical methods
have either banded or full matrix structures, it is
reasonable to take those two models as test
problems. Furthermore, stiffness of the problem,
a factor that influences the rate of convergence
of the solution, can be adjusted, and so can be
the dimension of the problem.

2. A BRIEF OVERVIEW OF NUMERICAL CONCEPTS

2.1. Runge-Kutta method
An autonomous form of an s-stage Runge-

Kutta method [3] is expressed as
() ()

() ()YFIbhyy
YFIAhyeY

m
T

nn

mn

⊗+=
⊗+⊗=

+ 1

 , (2)

where Y represents the intermediate
approximation vectors, A denotes the Runge-
Kutta matrix and h is the step size. Using Newton
iteration scheme results in the following linear
system:

() GJhAII ms =Δ⊗−⊗ , (3)

where J is a Jacobian matrix. In order to reduce
the computational cost, the Jacobian is evaluated
at a single point [3], at 0y for instance, and the
method is called modified Newton method [3][1].
This Jacobian is computed either using analytical
or numerical approach. If the users do not
provide the analytical Jacobian, a numerical
Jacobian is computed using finite difference
method.

There are two diverse approaches to solve the
linear systems, direct and iterative methods.
Time complexity of direct methods equals Ο(n3)
and of iterative methods Ο(kxn2), where k is the
iteration step and n is the problem size. Thus, it
is reasonable to consider the use of iterative
methods to solve large linear systems. In our
work we consider a widely used iterative method
called GMRES (Generalized Minimal Residual)

proposed by Saad [11] to solve the linear
systems.

2.2. Error estimation
The estimation and control of errors are

extremely important features in determining the
accuracy of a numerical solution. A numerical
method is supposed to produce a solution within
a prescribed error tolerance. There are two
measures of error commonly used, global error
and local error. Although we are usually
interested in global error which is the difference
between the true solution and the numerical
approximation, this error is not computable since
we do not know the true solution in advance,
besides it is difficult to estimate [12]. Therefore,
most numerical codes estimate the local error
and adjust the step size h in order to control the
global error indirectly.

One technique to measure the local error is to
use an embedding method introduced by Merson
[13]. The idea of this method is to construct
Runge-Kutta formulas which contain a second
approximation

nŷ besides the numerical solution

ŷ and the order of those two formulas differs by
one. The embedding process can be modeled by
the following Butcher’s tableau.

 c A
 y Tb

 ŷ Tb̂

 Te
The method defined by c, A and Tb is our
numerical approximation that has order q, and
that defined by c, A and Tb̂ is the second
approximation with one order higher or lower
than the original method. Normally the embedded
formula uses a lower order, i.e. 1ˆ −= qq [14].
The difference between the two approximations,

nŷ and
ny is used to estimate the local error

() ()YFIbbhe m
TT

n ⊗−=+
ˆ

1 . (4)

There are many ways to measure the size of the
estimated error vector. One way is to use a
weighted root mean square norm [15] where the
error is defined by

2

1

,1 ∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

N

i i

in

ewt
e

N
r , (5)

in which en,i is the ith component of the error
vector and ewt is an error weighting factor written
as

() iiiii rtolyyatolewt .,max ,1,0+= (6)

The parameter rtol and atol are respectively the
relative and absolute tolerances specified by the
user. The former indicates the number of digits in
accordance with relative accuracy taken at each
time step, and the latter designates the value of

 70

the corresponding component of the solution
vector. The estimated error at each time step
varies with the stepsize with the aim of taking
minimum number of steps while satisfying the
error boundary.

2.3. Stepsize selection
An ODE integrator generates the solution by

marching forward in time using one of the
stepsize selection strategies, fixed stepsize or
variable (adaptive) stepsize.

The simplest algorithms use fixed stepsize in
the computation, meaning that a constant
stepsize is used throughout the entire integration.
However, this strategy can lead to excessive
computation time especially when dealing with
stiff problems where solutions have sharp
changes. Therefore, modern solvers usually use
algorithms that monitor the accuracy of the
solution continuously and adjust the stepsize
adaptively according to local truncation error
calculated at each integration step. Stepsize
should be chosen as such that it should be
sufficiently small to cope with the sharp changes
in the solution and must be as large as possible
to minimize the computation cost and the round-
off error.

A standard stepsize selection formula in
integration of IVPs [15][16] is written as

n

k

n

n h
r

h
1

1

1 ⎟
⎠

⎞
⎜
⎝

⎛
=

+

+

ε , (7)

where r is the estimated error, k is a constant
related to the order of the method and ε =θ.TOL.
The value of θ < 1 is a safety factor to reduce the
risk of stepsize rejection. Although determining
the stepsize using standard stepsize strategy is
widely used and successfully implemented, for
certain cases more sophisticated methods are
required.

Based on the knowledge in linear digital control
theory, Söderlind introduced a PID (Predictive
Integral Derivative) controller to control the
stepsize. The general form of the PID controller
[17] is given as

() ()

n

k

n

kk

n

kkk

n

n h
rrr

h
DDPDPI

⎟
⎠

⎞
⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛
=

−

+−

−

++

+

2

2

1

1

εεε , (8)

where
PI kk , and

Dk are parameters of integral,
proportional and derivative gains respectively.
The family of filter based controllers can be
classified using a notation of HpDpApF, where pD,
pA and pF denote the dynamic order, adaptivity
and filter order respectively. One class of this
controller, H211b, is appropriate to solve medium
to non-smooth problems as stated in [17]. This
controller is defined by

() ()

n

b

n

bk

n

bk

n

n h
rrr

h
/1

2

1

1

1

1

−

−−

+ ⎟
⎠

⎞
⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛
=

εεε . (9)

In practice the value of b in equation (9) may be
chosen in the range of 2 – 8, where larger values
of b offer more smoothness of stepsize. Detail
discussion of these controllers can be found in
[17].

3. PARALLEL PERFORMANCE
There are various metrics to evaluate

performance of parallel systems, such as run
time, speedup and efficiency.

A sequential algorithm is usually evaluated in
terms of its execution time, and expressed as a
function of the problem size. On the contrary, the
execution time of a parallel algorithm depends
not only on the problem size, but also on the
architecture of the parallel computer and the
number of processors involved in the
computation.

A general model of parallel execution time [18]
is formulated as

commcompp TTT += , (10)

where compT and commT denote computation time

and communication time respectively. This model
is an ideal model where only computation and
communication processes are assumed to take
place. However, in parallel environment the
execution time will also incorporate waiting time
of a processor, synchronization time or even
collision time if exists. Thus, a more realistic
model of a parallel execution time is

δ++= commcompp TTT , (11)

where δ is the time a processor neither in the
state of computing nor in the state of
communicating. This parameter denotes the
overhead in parallel computation and thus limits
the speedup. The overhead can be caused by
several factors [19]:

• imbalanced workload;
• the time spent waiting at synchronization

level;
• extra computations in the parallel version

which are not needed in the sequential
version.

Unfortunately those issues are conflicting with
one another and thus must be traded off. Unlike
the computation and communication time that
contribute to the parallel execution time in a
straightforward manner, the parameter δ is
difficult to be determined.

4. PROBLEM STATEMENT
We use two types of test problems, 1-D
diffusion Brusselator problem and the Dense
problem. The dimension of ODEs used in
these two problems ranges from 100 to 700.

4.1. Brusselator problem
The Brusselator problem is modeled as [20]

 71

()

2

2
2

2

2
2 1

x
vvuBu

t
v

x
uuBvuA

t
u

∂
∂

+−=
∂
∂

∂
∂

++−+=
∂
∂

α

α
 , (12)

where u and v denote the concentration of
reaction products, A and B denote the
concentration of input reagents. The parameter

2Ld=α , where d is the diffusion coefficient and
L is the reactor length. The value of α determines
the stiffness of the problem. In our work we
chose A = 1, B = 3 and α = 0.02. The initial
conditions are

() ()
() .30,

,2sin10,
=

+=
xv

xxu π (13)

Setting () () ()11 ,1 1 +=Δ≤≤+= NxNiNixi and
discretizing the derivatives in equation (12) over
a grid of N points yields

()
()

()
()112

2

112
2

243'

241'

+−

+−

+−
Δ

+−−=

+−
Δ

+−+=

iiiiiiii

iiiiiii

vvv
x

uvuuv

uuu
x

uvuu

α

α

 , (14)

with () () () 30,2sin10 =+= iii vxu π and Ni K,1= .

4.2. Dense problem
The Dense problem [4][21]] is defined by

() mieQYy

i

j
jy

ii ,,1 ,1

2

' K=
∑

+= =

−

, (15)

where () []1,0 ,0 , ∈=ℜ∈ xeYY m and 11 DQQQ T= .
Matrix 1Q has orthonormal columns of a random
dense matrix. The eigenvalues of matrix D can
be adjusted and hence the eigenvalue spectrum
of matrix Q can be adjusted as well. In our work
we use matrix D with an eigenvalue spectrum
that ranges from 1 to 10.

5. IMPLEMENTATION ISSUES
In our work we use a block-diagonal Runge-

Kutta matrix proposed by Iserles and Norsett [22]
which is a method of order 4. For the second
approximation we use a third order method. The
construction of the third order method has to
obey a certain condition as described in [15]:

.16

,13

,12

,1

,,

,,

,

∑
∑
∑

∑

=

=

=

=

lkj
kljkj

jljk
lkj

j

kj
jkj

j
j

aab

aab

ab

b

 (16)

Because it is impossible to find a pair of order
4(3) for a 4-stage Runge-Kutta method, we use a
method called FSAL (First Same As Last) as
suggested in [15]. This method adds y as a fifth
stage of the process. As a result we have four
linear systems with five unknowns, and thus we

must take an arbitrary value for one of the
unknown. In order to have a relative small
difference between vector Tb̂ and Tb we set

16
5 106ˆ −×=Tb . The modified Runge-Kutta matrix

is thus given in Table 3.

TABLE 3 MODIFIED ISERLES AND NØRSETT
PAIR FORMULA.

6x10
6

0.857143
6

0.857143
6

0.857143
6

0.857143

6x10
6

6.857143-
6

6.857143-
6

9.857143
6

9.857143

1 1-
2
3

2
3

2
1

6
3 0 0

6
33

6
3

2
1 0 0

6
33

0 0
12
5

12
321

6
33

0 0
12

321
12
5

6
33

16-

16-

−

+

−−

++

−−

To control the error we consider the stepsize
controller introduced by Söderlind that belongs to
H211b class and set b = 4 as recommended in
[17].

6. PARALLEL IMPLEMENTATION
In our experiment we exploit parallelism across

the method as well as parallelism across the
system. Parallelism across the method is
implemented for solving the nonlinear systems
using Newton’s scheme as discussed in [23], and
parallelism across the system is employed for
solving the linear system using GMRES method
as presented in [24]. If there are only two
processors available, parallelization is performed
only using across the method to solve the two
nonlinear systems simultaneously. If more
processors are available, the parallelization
across the system is also done to solve the linear
systems. Figure 5 gives an illustration of the
parallelization process.

If there are only two processors, after
initialization p1 sends vector Y2 and stepsize h to
p2. Afterwards each processor builds its own
Jacobian, and the succeeding computation can
be carried out concurrently. If there are four
processors or more, the resulting linear systems
can further be parallelized, meaning that the two
groups of processors, p1 – p3 and p2 – p4 as
depicted in Figure 6, work independently in
solving the linear systems and the exchange of
data between those two groups only occurs at
the beginning and the end of the computation, or
if synchronization is needed, such as if
convergence is not achieved after a predefined
maximum Newton iteration and time step h
needs to be reduced as a consequence.

 72

FIGURE 5 STRUCTURE OF PARALLEL ODE.

FIGURE 6 PROCESSOR WORKING-
RELATIONSHIP.

To ensure load balancing, the number of
processors involved in parallel environment
should be an even number. Since only four
processors are available in our working platform,
we could use only two and four processors in
parallel and each process is mapped onto each
processor.

7. NUMERICAL EXPERIMENTS AND RESULTS
The experiment was performed on a cluster of
PCs, consisting of four processors with similar
characteristics, connected through a 100 Mbit
Ethernet link. Each PC has an INTEL Pentium
III 450 MHz processor and 512 MB RAM. They
run Linux Mandrake 8 and the test code was
written in C. The measurement was performed
in PVM environment that provides a collection
of library routines for message-passing.
Further details concerning PVM can be found
in [25].

7.1. Brusselator problem
The performance curve of the solver for the
Brusselator problem with finite difference and
analytical Jacobian is given in Figure 7.

Speedup of ODE solver for Brusselator problem with
finite difference and analytical Jacobian

0

0.5

1

1.5

2

2.5

3

100 200 300 400 500 600 700

ODE dimension

Sp
ee

du
p

Sp2fd
Sp4fd
Sp2an
Sp4an

FIGURE 7 SPEEDUP OF ODE SOLVER FOR
THE BRUSSELATOR PROBLEM WITH FINITE-
DIFFERENCE AND ANALYTICAL JACOBIAN.

We note from Figure 7 that using
multiprocessors will result in a better
performance despite how the Jacobian matrix is
provided except for ODE with small dimension,
i.e. n = 100, where applying parallelization will
result in a performance degradation because of
the domination of communication time over
computation time. We also observe that a
superlinear speedup occurs for large size of ODE
solved using two processors, i.e. ODE of
dimension n ≥ 600. This superlinear speedup
occurs for ODE with either finite difference or
analytical Jacobian. Superlinerar speedup does
not reflect the actual performance gain, it is
usually caused by the size of data which might
be too large to fit into the main memory of a
single processor.

Our observation indicates that solving the
linear system requires approximately 50 to 70%
of the overall execution time in each integration
step. This large percentage of time will contribute
to a better performance when more processors
are available except for small data size, i.e. for
ODE with dimension n ≤ 200.

7.2. Dense problem
The performance of the Dense problem is
illustrated in Figure 8. We note from this figure
that a better performance can be achieved by
using 2 and 4 processors.

For solver with finite difference Jacobian, we
observe that approximately 95 to 99% of
computation time is required to compute the
Jacobian matrix and less than 5% to solve the
linear systems. Because only two processors are

p2

p1

p3 p4 p2

p1

(a) Two processors (b) Four processors

Preprocessing
tn = t0
while (tn < tfin)
initialize Y
 if p > 1
 p1 sends Y2 and h to p2
 end if
 Newton_converge := false
 while (not converge)
 call nonlinear solver -> parallelism across

 the method [23]
 GMRES_converge := false
 while (not converge)

 call linear solver -> parallelism across
 the system [24]

 end while
 end while
 estimate error
 compute hnew
 tn = tn + hnew
end while

 73

involved in solving nonlinear systems, the
maximum attainable speedup is two, and
employing more processors will not contribute to
speedup because of the very small amount of
time is needed to solve the linear system.

Speedup of ODE solver for Dense problem with finite
difference and analytical Jacobian

0

0.5

1

1.5

2

2.5

100 200 300 400 500 600 700

ODE dimension

Sp
ee

du
p

Sp2fd
Sp4fd
Sp2an
Sp4an

FIGURE 8 SPEEDUP OF ODE SOLVER FOR
THE DENSE PROBLEM WITH FINITE-
DIFFERENCE AND ANALYTICAL JACOBIAN.
For solver with analytical Jacobian, the
computation time required to solve the linear
system at each integration step is approximately
25 to 30% of the overall execution time.
However, this amount of time is not large enough
to contribute to the speedup by parallelizing the
linear system, in contrary the performance will
degrade. In other words, for solver with analytical
Jacobian, the maximum performance is achieved
by using two processors where only
parallelization across the method is employed.

8. CONCLUSION
From the experiment we conclude that if

solving the linear systems requires a large
percentage of time as in the Brusselator problem,
two levels parallelization will result in a better
performance in terms of speedup. However, if
solving the linear systems only consumes about
30% of the overall execution time as in the Dense
problem, parallelizing the linear systems will not
contribute to a better performance. Further
experiment by incorporating more processors will
be performed.

REFERENCES
[1] J. D. Lambert, “Numerical methods for ordinary

differential equations: the initial value problems,” John
Wiley and Sons, New York, U.S.A., 1999.

[2] C. W. Gear, “The potential of parallelism in ordinary
differential equations,” Comp. Sci. Dept., Univ. of Illinois
at Urbana Campaign, U.S.A., Tech. Rep. UIUC-DCS-R-
86-1246, 1986.

[3] K. Burrage, “Parallel and sequential methods for ordinary
differential equations,” Oxford University Press, New
York, U.S.A., 1995.

[4] H. Suhartanto, “Parallel iterated techniques based on
multistep Runge-Kutta methods of Radau type,” Ph.D.

Thesis, Dept. of Mathematics, University of Queensland
Brisbane, Australia, 1997.

[5] C. Bendtsen, “ParSODES: a parallel stiff ODE solver
version 1.0, user’s guide”. Available:
http://www.netlib.org/ode.

[6] J. J. B. de Swart, W. M. Lioen, and W. A. van der Veen,
“Specification of PSIDE,” CWI Amsterdam, Tech. Rep.
MAS-R9833, 1998. Available:
http://www.cwi.nl/cwi/projects/PSIDE.

[7] S. D. Cohen and A. C. Hindmarsh, “CVODE, a
stiff/nonstiff ODE solver in C,” Computers in Physics, 10
(2), pp. 138-143, 1996.

[8] P. N. Brown, G. D. Byrne, and A. C. Hindmarsh, “VODE:
a variable coefficient ODE solver,” SIAM J. Sci. Statist.
Comput. 10, pp. 1038-1051, 1989.

[9] G. D. Byrne, “Pragmatic experiments with Krylov
methods in the stiff ODE setting,” In J.R. Cash and
I. Gladwell, editors, Computational Ordinary Differential
Equations, pp. 323-356, Oxford, 1992. Oxford University
Press.

[10] G. D. Byrne and A. C. Hindmarsh, “PVODE, an ODE
solver for parallel computers,” Int. J. High. Perf. Comput.
Apps. 13(4), pp. 354–365, 1999.

[11] Y. Saad and M. H. Schultz, “GMRES: A Generalized
Minimal Residual Algorithm for Solving Nonsymmetric
Linear Systems,” SIAM, J. Sci. Stat. Comput. 7 (3), pp.
856–869, 1986

[12] R. D. Skeel, “Thirteen ways to estimate global error,“
Numerical Mathematics 48, pp. 1-20, 1986.

[13] R. H. Merson, “An operational method for the study of
integration processes,” In Proc. Symp. Data Processing,
Weapons Research Establishment, Salisbury, S.
Australia, 1957.

[14] J. R. Dormand, J. P. Gillmore, and P. J. Prince,,
“Globally Embedded Runge-Kutta Schemes,” Annals of
Numerical Mathematics 1, pp. 97-106, 1994.

[15] E. Hairer, S. P. NØrsett, and G. Wanner, “Solving
Ordinary Differential Equations I: Nonstiff Problems,”
Springer-Verlag, Springer Series in Comp. Math., Berlin,
1993.

[16] C. W. Gear, “Numerical initial value problems in ordinary
differential equations,” Prentice Hall, Englewood Cliffs,
NJ, 1971.

[17] G. Söderlind, “Digital Filters in Adaptive Time-Stepping,”
ACM, TOM 29 (1), pp. 1-26, 2003.

[18] I. Foster, “Designing and building parallel programs:
concepts and tools for parallel software engineering,”
Addison Wesley Publishing Company, 1995.

[19] D. E. Culler, J. P. Singh, and A. Gupta, “Parallel
computer architecture: a hardware/software approach,”
Morgan Kaufmann Publishers, Inc., San Francisco, CA,
U.S.A., 1999.

[20] E. Hairer and G. Wanner, “Solving Ordinary Differential
Equations II: Stiff and Differential Algebraic Problems,”
Springer-Verlag, Springer Series in Comp. Math., Berlin,
1996.

[21] K. Burrage, R. B. Sidje, and C. Eldershaw, “RadPk: a
matrix free version of Radau5,” unpublished, 1997.

[22] A. Iserles, and S. P. NØrsett, “On the theory of parallel
Runge-Kutta methods,” IMAJNA 10, 1990, 463-488.

[23] M. A. Kartawidjaja, H. Suhartanto, and T. Basaruddin,
“Performance of a parallel technique for solving
nonlinear systems arising from ODEs”, IEEE
TENCON2004 Conference, Chiang Mai, Thailand, 2004.

[24] M. A. Kartawidjaja, H. Suhartanto, and T. Basaruddin,
“Performance of parallel iterative solution of linear
systems using GMRES”, IPSI-2004 Kopaonik
Conference, Serbia, 2004.

[25] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R.
Manchek, and V. Sunderam, “PVM: Parallel Virtual
Machine – A users’ guide and tutorial for networked
parallel computing,” MIT Press, Cambridge,
Massachusetts, London, England, 1994.

